

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

349 Chapterwise CBSE PYOs (Chemistry)—17

PREVIOUS YEARS' QUESTIONS

2019

Very Short Answer Type Questions [1 Mark]

1. CH₃CHO is more reactive than CH₃COCH₃ towards reaction with HCN. Why?

[AI Chandigarh]

Ans. It is because CH₃CHO is more polar and it has less steric hinderance than CH₃COCH₃.

2. Write the IUPAC name of the following compound:

[AI Chennai, Panchkula]

$$CH_2 = CH - C - CH_3$$

Ans.
$$\overset{4}{\text{CH}_2} = \overset{3}{\overset{2}{\text{CH}}} - \overset{1}{\overset{2}{\text{CH}_3}}$$
But-3-en-2-one

3. p-Nitrobenzoic acid has lower pKa value than benzoic acid, why?

[AI Chandigarh]

Ans. It is because $-NO_2$ group is electron withdrawing, therefore, p-nitrobenzoate ion is more stable than benzoate ion, p-nitro benzoic acid is more acidic and has lower pKa.

4. Why is oxidation of CH₃CHO easier than CH₃COCH₃?

[AI Chandigarh]

Ans. It is because CH₃CHO are strong reducing agent than CH₃COCH₃ and bond breaks easily in CH₃CHO.

Short Answer Type Questions [2 Marks]

5. Write structures of compounds A and B in each of the following reactions:

(i)
$$(H_2CH_3U)$$
 (H_3CH_3U) (H_3CH_3U)

6. Write structures of main compounds A and B in each of the following reactions:

(i)
$$CH_3CH_2CN \xrightarrow{CH_3MgBr/H_3O^+} A \xrightarrow{LiAlH_4} B$$

$$CH_3 \xrightarrow{(i) CrO_3/(CH_3CO)_2O} A \xrightarrow{H_2N-NH_2} B$$

[Delhi]

Long Answer Type [I] Questions [3 Marks]

7. Write the structures of the main compounds 'A' and 'B' in each of the following reactions:

a Colsifo Na

(a)
$$CH_3CH_2OH \xrightarrow{PCC}$$
 'A', $CH_3OH/dry HCl(g)$ 'B'
(b) $C_6H_5COCH_3 \xrightarrow{NaOI} A + B$

[CBSE]

2-Bromo-2-methyl propanoic acid

10. Write chemical equations for the following reactions:

- Propanone is treated with dilute Ba(OH)2.
- (ii) Acetophenone is treated with Zn(Hg)/Conc. HCl
 (iii) Benzoyl chloride is hydrogenated in presence of Pd/BaSO₄.

[Delhi]

Ans. (i)
$$2CH_3-C-CH_3 \xrightarrow{\text{dil. Ba}(OH)_2} CH_3-C-CH_2-C-CH_3$$
Acetone (Propanone) condensation CH_3

4-hydroxy-4-methyl pentan-2-one

COCH₃

$$\begin{array}{c}
CH_2-CH_3\\
\hline
Conc. HCl
\end{array}$$

$$\begin{array}{c}
CH_2-CH_3\\
+ H_2O
\end{array}$$
Acetophenone

Ethyl benzene

(iii)
$$C_6H_5$$
— C — $Cl + H_2$

Benzoyl chloride

Pd/BaSO₄

Benzaldehyde

Benzaldehyde

11. (a) Give reasons:

Delini

- (i) Benzoic acid is stronger acid than acetic acid.
- (ii) Methanal is more reactive towards nucleophilic addition reaction than ethanal.
- (b) Give a simple chemical test to distinguish between propanal and propanone. [CBSE]
- Ans. (a) (i) It is because benzoate ion is more stable than CH₃COO⁻.
 - (ii) It is because methanal is more polar and has less stearic hinderance than ethanal.
 - (b) Add Fehling's solution to each of them and heat. Propanal will give brick red ppt. whereas propanone will not react with Fehling's solution.

12. Predict the main product of the following reactions:

(i)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_6 CH_7 CH_8 $CH_$

Long Answer Type [II] Questions [5 Marks]

- 13. (a) What is main product form when propanal reacts with the following reagents:
 - (i) 2 moles of CH₃OH in presence of dry HCl(g)
 - (ii) Dilute NaOH
 - (iii) NH2-NH2 followed by heating with KOH in ethylene glycol.
 - (b) Arrange the following compounds in increasing order of property indicated:
 - (i) FCH₂COOH, O₂N—CH₂—COOH, CH₃COOH, HCOOH— acid character.
 - (ii) Acetone, Acetaldehyde, Benzaldehyde, Acetophenone— reactivity towards addition of HCN.

 [AI Panchkula]

Ans. (a) (i)
$$CH_3$$
— CH_2 — C — H CH_3OH CH_3 — CH_2 — CH — OCH_3 (ii)

Ans. (a) CH_3 — CH_3

(ii)
$$2CH_3$$
— CH_2 — C — H — CH_3 — CH_2 — CH — CH — CH_3

(iii)
$$CH_3-CH_2-C=O+H_2N-NH_2 \xrightarrow{KOH} CH_3-CH_2-CH=N-NH_2$$

 $CH_3-CH_2-CH=N-NH_2 \xrightarrow{KOH} CH_3-CH_2-CH_3+NH_2-NH_2$

- (b) (i) $CH_3COOH < HCOOH < FCH_2COOH < O_2N-CH_2COOH$
 - (ii) Acetophenone < Benzaldehyde < Acetone < Acetaldehyde.
- 14. (a) Give IUPAC name of CH₃—CH—CH—CHO.
 - (b) How can you distinguish between ethanal and ethanol?
 - (c) How will you convert the following:
 - (i) Toluene to Benzoic acid (ii) Ethanol to propan-2-ol
 - (iii) Propanal to 2-hydroxy propanoic acid

[AI Chandigarh]

Ans. (a) But-2-en-1-al

(b) Add Tollen's reagent to each. Ethanol will not react whereas ethanal will form silver mirror.

- 15. (a) Give IUPAC name of salicyldehyde.
 - (b) Chloro acetic acid is more acidic than acetic acid.
 - (c) Write the product formed when (CH₃)₃CCHO reacts with the following:
 - (i) Zn amalgam and conc. HCl
 - (ii) Conc. NaOH solution
 - (iii) Semicarbazide and weak acid

[AI Chandigarh]

Ans. (a) 2-Hydroxy benzaldehyde.

Harmond Hall

(b) Chloro acetate ion is more stable than acetate ion because —Cl is electron withdrawing, CH₃— is electron releasing.

(c) (i)
$$CH_3$$
 CH_3 CH_3

Propanal to 2-bydroxy propanoic acto